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Models of polymer collapse in three dimensions: Evidence from kinetic growth simulations
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We present simulational evidence that kinetically grown tricolor walks and kinetically grown trails on
selected lattices in three dimensions are equivalent to interacting walks and trails at their respective col-
lapse temperatures, all of which model polymers in dilute solution at the 6 point. We discuss the rela-
tion of these models to the canonical model of a single self-attracting polymer in dilute solution: the
self-avoiding walk with nearest-neighbor interactions. The main results concern the divergence of the
specific heat and these differ from the predictions of the (three-parameter) Edwards model. The
behavior of the kinetic trail simulations also raises doubts about the current field theoretic description of

collapse in interacting trails.

PACS number(s): 61.41.+e, 05.50.+q, 05.70.Fh

I. INTRODUCTION

There has been continuing interest in statistical
mechanical models of the conformations of linear poly-
mers in dilute solution in two and three dimensions [1].
One aim of these studies is to extract the universal (criti-
cal) scaling properties of these models, since they should
hold exactly for a range of physical systems. It is expect-
ed that the models display three distinct behaviors. At
high temperatures they should mimic polymers in a
“good” solvent, where the excluded volume effect is dom-
inant. Opposing this, at low temperatures the model
should describe a collapsed, internally dense, state caused
by the attractive interactions of different sections of a po-
lymer mediated by a solvent. At one temperature, known
as the 6 point, the excluded volume and attractive forces
‘“balance” to give a third, intermediate behavior. This
third behavior is often approximated by a simple random
walk model. However, it was realized some time ago that
the real situation is more complex. In two dimensions,
the 6 state does not share the scaling features of a ran-
dom walk [2,3]. In three dimensions the two equivalent
descriptions of the O state are given by the continuum
Edwards model with two and three body forces [4,5] and
n—0 limit of the magnetic (tricritical) (¢?)*—(¢?)* O(n)
field theory [6—8]. The analysis of these theories is subtle
and predicts that d =3 is the upper critical dimension of
the O state, and therefore that the critical behavior of this
state is given by mean-field theory predictions modified
by logarithmic factors. On the other hand, the canonical
model of polymer collapse in lattice statistical mechanics
has been self-avoiding walks (SAW) on a regular lattice
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interacting via nearest-neighbor attraction. This model
manifestly includes the ‘“excluded volume” condition of
real polymers as well as the attraction necessary for col-
lapse. There has not been a direct demonstration that the
behavior of this model around its collapse point is given
by the Edwards model, although it is widely accepted as
such [9].

The partition function of the self-interacting self-
avoiding walk model (ISAW) is given by

Zy(o)=3 o™, (1)
PN

where the sum is over the set of all self-avoiding walks
@y of length N with one end at some fixed origin. The
Boltzmann weight =e”® is associated with a nearest-
neighbor contact of energy —e (which we fix to be —1
without loss of generality). The average of any quantity
Q over the ensemble set of allowed paths ¢, of length N
is given generically as

> NQ(cp Jo™
<Q>:‘p2—w:- (2)

PN

We define a normalized finite-size internal energy per step

by
(m)
Uy= 3
N N (3)
and a normalized finite-size specific heat per step by
(m?)—{(m)?
Cy=—"7"7"". 4
N N @

The limiting values of these are related in the usual way
to the reduced free energy, given by

. 1
f(w)ZNh_r)nw —Fan,,(co) . (5)
Specifying a walk by the sequence of position vectors
r,=0, r,...,ry the average mean-square end-to-end

distance is
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(RO y=A(ry1y) . (6)

The scaling behavior of the above quantities as N be-
comes large defines the phase of the system. As the tem-
perature is varied there should be a tricritical collapse
transition at some w=w,. Hence, as expounded above,
there are three distinct asymptotic behaviors expected.
For high temperatures (o <w,) the excluded volume in-
teraction is the dominant effect and the behavior is
universally the same as the noninteracting SAW problem.
Therefore the partition function and average root-mean-
square end-to-end distance are expected to scale as

Zy(@)~ Ap N+ (7)
and
V(RZ)y~BN'*, (8)

with 4, B, and u expected to vary with temperature and
be nonuniversal, while the exponents ¥ . and v, are ex-
pected to be constant and universal. The current best
Monte Carlo estimate of v, in three dimensions is
0.5877(6) [10]. The connective “constant” u(w) is related
to the reduced free energy f (w) of the system as

wo)=exp[— flw)], 9)

and this holds at all temperatures. One can also consider
the partition function for closed walks (loops), which is
expected to scale as

Z19o%5(0) ~Du N2 (10)
where the (three-dimensional) hyperscaling relation
2—a,;=3v, (11)

is expected to hold. The finite-size internal energy Uy
and specific heat Cy should converge to (temperature
dependent) constants U (o) and C (@), respectively.

For low temperatures (o> w,) it is accepted that the
partition sum is dominated by configurations that are
internally dense and the average root-mean-square end-
to-end distance scales as

V' (RX)y~BN"~, (12)

with v_=1. The partition function should scale
differently [11] to that at high temperatures since a col-
lapsed polymer should have a well defined surface (and

associated surface free energy). Therefore
Zy(w)~ ApuV N (13)

with u, <1. Note that 4, B, u, and u, are temperature
dependent. Again the internal energy Uy and specific
heat Cy should converge to U (w) and C (w), respec-
tively.

The collapse transition at ® =w, is expected to be tri-
critical in nature and so should conform to a crossover
scaling theory [12]. The crossover from high and low
temperature behavior to that exactly at the collapse point
is controlled by a crossover exponent ¢. For example, for
temperatures close to w, and large lengths N, the root-
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mean-square end-to-end distance is expected to behave as
V' (R2)y~B,N"R(B,y), (14)

where y=tN?® is the scaling variable with
t=(w,—w)/w,, while B; and B, are nonuniversal con-
stants. The function &2 has asymptotic properties for
large arguments (positive and negative) so as to asymptot-
ically match the high and low temperature behaviors:

E+y(v+—v,)/¢ as y— oo
R(gy)~ {E, asy—0 (15)
E_|y!(v,Av,)/¢ as y—>— oo .
In three dimensions v, =1 and there may be confluent

and/or additive logarithmic corrections to these power
laws. Exactly at the 6 point the scaling of the partition
function should be

Zy(o)~ Ap N (16)
The mean-field value y,=1 is expected to hold in three
dimensions. Similarly, the loop partition function has the
same form as at high temperatures with «, substituted for
a ., and hyperscaling should hold with

2—a,=3v,, (17)

implying that o, =1. The thermodynamic limit specific
heat C_ (w) has a singularity at o=, and its singular

part behaves as
CSing ()~ Cyt . (18)

Note that this specific heat exponent is different from the
exponent a, which is defined in terms of the loop parti-
tion function. There is a tricritical scaling relation con-
necting a to the crossover exponent ¢ as

2—a=1/¢ . (19)

At fixed Boltzmann weight w =, the singular part of the
internal energy and specific heat scale as

Ug}ngN U,N(a_l)¢ (20)
and
Cine~C,N . 21)

Of course, Uy always approaches a constant so that the
singular part is a finite-size correction. However, Cy
may diverge, in which case the singular part will dom-
inate the behavior in the large N limit. In three dimen-
sions it is expected that a =0 and so three dimensions is a
marginal scenario. Therefore let us define a new “ex-
ponent” § characterizing the logarithmic divergence of
Cy if a=0:

Cy~C,(InN)* . (22)

The canonical (power law) exponents in three dimensions
are believed to take on mean-field values, as mentioned,
and these are collected in Table 1.



2144

TABLE 1. The canonical values of the exponents for the col-
lapse transition in three dimensions, the Edwards model, and
the kinetic growth models simulated in this work. The logarith-
mic corrections to these power laws are, however, not all identi-
cal.

Exponent Three-dimensional collapse

v

O M= = = 1]

In three dimensions fixed at the collapse temperature
(equivalent to w=w, in the ISAW model) the Edwards
model and tricritical O(n) field theory predict the follow-
ing corrections to mean-field theory. The partition func-
tion for open configurations is given by

49 1

~ AuN
Zy~Ap 484 InN

1— . (23)

The mean-square end-to-end distance is predicted to
behave like

37 1

1____

2y
(R7)y~BN 363 InN

’ (24)

while the finite-size specific heat values asymptotically
diverge as

Cy~C,(InN)3/11 | (25)

Monte Carlo studies [13,14] of ISAW and interacting
trails (see below) have not verified these predictions.
However, the lengths of walk/trails considered have been
relatively short (N <300) due to the difficult nature of
simulations of longer walks. Therefore it is desirable to
look for models of collapsing polymers for which one can
generate long configurations more easily.

Kinetic growth walks (KGW) [15—-17] and smart kinet-
ic growth walks (SKW) [18,19] were introduced a decade
ago as dynamic models of polymerization. Kinetic
growth walks [15-17] in two and three dimensions are
defined simply as random walks which at each time step
choose from the available sites keeping the self-avoidance
condition strictly. On regular lattices these walks were
found to eventually stop by entering self-made traps and
their size scales in the same way as static noninteracting
SAW. In contradiction to this behavior, smart kinetic
growth walks [18] in two dimensions were explicitly con-
structed not to trap (configurations only close by loop
formation). This was done by adding a “dressing”
around the walk on the dual lattice that distinguishes the
left- and right-hand sides of the walk as it is constructed,
and forbidding steps that do not allow the further con-
struction of the dressing. This effectively means that a
walk can only enter places where there is at least one es-
cape route. These SKW trace out the hulls of percolation
clusters at threshold [18] and their size exponent has been
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later deduced to be the same as that of 6-point polymers.
In fact, it was shown [19] that closed SKW defined on the
honeycomb lattice are equivalent to static interacting
self-avoiding loops with nearest-neighbor and next-
nearest-neighbor attraction. Unfortunately SKW are
difficult to generalize to three dimensions due to the non-
local information that is required there.

However, a clever generalization has been recently
found [20-22] and is known as tricolor walks (TCW).
These are defined on the Wigner-Seitz cells of the body
centered cubic (WS-bcc) lattice, and a three color dress-
ing is added to the dual of this lattice to give the walk the
“smart” property. The exact construction of this model
is explained in great detail in [21]. We note that the WS-
bee lattice has coordination number 4. It was found that
these tricolor walks have a fractal dimension close to 2
and map onto an interacting SAW model with nearest-
and next-nearest neighbor interactions. It was then de-
duced that these kinetic walks may provide information
about the collapse transition in three dimensions. In
comparison, the SKW on the honeycomb lattice [23],
KGW on the Manhattan lattice [24,25,3,26], which are
smart by virtue of the lattice, and Kkinetic trails (see
below) on the square lattice [27] have all provided infor-
mation about the collapse of two-dimensional polymers.
Since it has been argued [20-22] that tricolor walks
might behave in an equivalent manner (that is, they
might be related to collapsing polymers in three dimen-
sions), it is of interest to investigate this matter further.
In the two-dimensional cases the new ingredient in the
most recent simulations has been the calculation of the
internal energy and specific heat. This allows one to in-
vestigate whether the specific heat diverges or not: a sure
sign of the existence of a transition. In this work, we
simulate tricolor walks, calculating the specific heat,
among other quantities, in an attempt to identify the crit-
ical nature of the static equivalent of TCW.

Another lattice model of polymer configurations stud-
ied extensively is that of trails [28—-31]. These are paths
on a lattice which have no two steps on the same bond of
that lattice but may occupy the same site. This restric-
tion is sometimes referred to as bond-avoiding, in con-
trast to self-avoiding walks which are site avoiding (that
is, no two vertices of the walk may occupy the same site
on the lattice). Clearly walks are, by default, also bond
avoiding. Trails possess an excluded volume effect and it
is believed that trails and SAW are in the same universal-
ity class [32,33] which describes good solvent polymers.
It has been shown [29] that there should exist a collapse
transition when contact attraction is added to the trail
model. Moreover, Shapir and Oono [29] have argued
that this point should be tricritical in nature, as it is at
the ISAW collapse point. However, they predict that
ISAW and interacting self-avoiding trails (ISAT) are in
different universality classes. Importantly, while the
upper critical dimension for ISAW is expected to be
d,=3, the Shapir-Oono field theory gives d, =4 for
ISAT. Therefore they expect generically that in three di-
mensions v,71 and y,#1 (that is, the exponents do not
take on mean-field values—of course it is always possible
that some exponents fortuitously take on a mean-field
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value below an upper critical dimension but this should
not be the case with all exponents if hyperscaling is
obeyed).

We define a general ISAT model in the following way.
Consider a regular lattice of coordination number 2q and
configurations @y of trails of length N starting from a
fixed origin. Let m;, k=2, ...,q be the number of sites
of the lattice that has been visited k times by the trail.
The partition function of the general model is

m

Zylwy .oy 0 )= @y w0, (26)
PN

where w; is the Boltzmann weight associated with k-
visited sites. The canonical model is one where every seg-
ment of the trail at some contact site interacts with every
other segment at that site, so that

k
cok=co(2) for k=2,...,q, 27

with ®=w,. Now, two other reasonably natural models
are defined by

o, =0*"! for k=2,...,q (28)
and
o,=w for k=2,...,q . (29)

It would be expected that each model possesses a collapse
transition at some value of w and that the transition falls
into the same universality class. Of course, if the coordi-
nation number of the lattice is 2g =4 then the only possi-
bility is a single contact and all three models are iso-
morphic. The canonical model has been investigated in
two and three dimensions using exact enumeration
[30,34,31] and Monte Carlo techniques [35,14,36]. In
two dimensions recent work [27] provides a body of evi-
dence that reinforces the hypothesis that ISAT and
ISAW are truly in different universality classes. This
work was accomplished using a kinetic growth algorithm.
It would be desirable, of course, to consider three-
dimensional trail collapse since the topological difference
between walks and trails only occurs in two dimensions.
A path in two dimensions separates different areas of
space so the crossings of trails make them topologically
different. This property only occurs in two dimensions.
The growth model of kinetic trails (KGT) was intro-
duced by Lyklema [37] for reasons similar to those that
led to the introduction of kinetic walks. It is defined as
follows: choose a starting site on a coordination 2q lattice
and dynamically construct a trail by adding steps at in-
teger time intervals, choosing at each time step equally
from the available nearest-neighbor sites that do not
violate the bond-avoiding condition. This produces trails
of any length with a particular distribution different to
that of noninteracting (static) trails. Except for the first
step, if the kinetic trail is not on a site that has been visit-
ed previously, there are 2g — 1 choices and the probability
of each is simply 1/(2g —1). If the trail has previously
visited the site j times the choice is restricted to
2q—2j—1 possibilities and the probability is
1/(2g—2j—1). One can see a step that has been visited
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k times in total has an associated probability of

1
Py (2g —1)(2q —3)2q —5) -+ (2g —2k +1) ° 30
Lyklema [37] found estimates of the analogs of the ex-
ponents v and ¥ for the square (¢ =2) and cubic (¢ =3)
lattices. A kinetic trail on a regular lattice of coordina-
tion number 2q can be mapped onto a static interacting
SAT model with fixed weights

(g—
wk=(2q—1)kPq,k=Tq—;—— .

)k
(31)
)k

)= | o)

The connective constant of the partition function is then
u=2qg—1. As opposed to SKW and TCW every static
open trail configuration occurs as a kinetic trail. More-
over, if we choose a coordination number 2g =4 lattice so
that a site can only be visited once or twice, the KGT
maps precisely onto the canonical static trail problem de-
scribed above.

In this work we utilize the mapping of the tricolor
walk and kinetic trails onto static problems to investigate
the properties of these static models in three dimensions.
In addition to the tricolor walk which is defined on the
Wigner-Seitz cells of the body-centered cubic lattice we
consider kinetic trails on the diamond (coordination
2q =4), cubic (coordination 2g =6), and WS-bcc (coordi-
nation 2qg =4) lattices. This permits us to investigate the
universality of interacting trails, in addition to the
behavior of a kinetic trail that is isomorphic to a canoni-
cal static model on a coordination number 2g =4 lattice.
Our main results come from the calculation of the
specific heat. While the TCW static model equivalent is
not the canonical model, the length of the simulated
walks allows the comparison of the logarithmic correc-
tions of a lattice model of collapse to that of the Edwards
model. Universality would suggest that the tricolor walk
gives the behavior of the canonical ISAW as well. We
realize that this is a debatable issue but point out that in
two dimensions a similar debate seems to have resolved
itself in favor of a wide universality of the collapse transi-
tion.

II. SIMULATIONS AND ANALYSIS TECHNIQUES

We have generated kinetic growth trails and tricolor
walks of various lengths up to 2% steps. The occupied
sites of the walk were stored by means of a hash table
[38], with the hash index being computed from the coor-
dinates. This enables efficient testing of self-avoidance
without having to store the whole lattice, so that the gen-
eration of a walk of length N requires time O(N) only.
The size of the hash table needs to exceed the maximal
walk length only slightly, so that the memory require-
ment is also O(N). When a walk reaches the desired
maximal length or gets trapped, a new one gets generat-
ed, thereby ensuring the statistical independence of the
walks sampled at fixed length.

We have calculated the proportion left open at various
stages Qp, the root-mean-square end-to-end distances
Ry, and information on the number of contacts for the
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calculation of the internal energy Uy and the specific
heat Cy with estimates of statistical errors. With the re-
cent focus on the reliability of random number generators
[39] we mention that we have used an implementation of
a mixed linear congruential algorithm [40] that has
proved to be comparatively reliable.

Although the generated walks are independent of each
other, we have highly correlated data between different
lengths, as every walk of a given length has contributed
to all data sets of shorter length. We notice that this can
be effectively overcome by calculating quantities using an
exponential spacing.

We simulated the model on an unbounded lattice to in-
vestigate the bulk behavior. For the sake of comparison,
it took 30 CPU seconds to generate one walk of length
2%° on an IBM RISC 6000/560 computer. We have simu-
lated 2.9 X 10* trails on the simple cubic lattice, 7.8 X 10*
trails on the diamond lattice, 1.4X10* trails on the
Wigner-Seitz bcc lattice, and 2.4 X 10* tricolor walks.

III. TRAILS

We now present the analysis of the simulations of the
kinetic trails. These simulations were carried out on the
simple cubic lattice (sc), the diamond lattice (diamond),
and the lattice given by the Wigner-Seitz cells of the
body-centered cubic lattice.

We first considered the behavior of the mean-squared
end-to-end distance R =(R?) . For this we plotted in
Fig. 1 R} /N versus N ~!/2. One sees that this ratio ap-
proaches a constant as N — oo with the finite-size correc-
tions being of the order of some inverse power A=~0.5 of
N,i.e.,

RZ~RN(1—R'N™%). (32)

The length scale exponent is therefore

The limiting value of the ratio R% /N is correlated with
the sparsity of the lattice, being smallest for the relatively
dense bce lattice and largest for the rather thin WS-bce
lattice. We note that in contrast to Eq. (23) the correc-
tion term is certainly not O (1/InN).

Next, we considered the probability Py of generation
of trails of length N or larger. In Fig. 2 we plotted this
quantity versus N ~!/2 resulting in straight lines. Py
does not decay to zero, but to a finite number P rela-
tively close to one, showing that a kinetic trail grows
indefinitely with a finite probability.

Py~P_ +P'N~ 12, (34)

P, decreases with the sparsity of the lattice. As the par-
tition function for open configurations is related to Py by

ZPn~(2g —1)VPy | (35)

where 2g is the coordination number of the lattice. This
implies an exponent

Yker—1 (36)

and a free energy equal to In(2¢ —1). On the other hand,
the linear behavior of the plot in Fig. 2 shows that the
trapping rate

Onv=Py—Py, G7

decays as N ~3/2. Qy is equal to the probability of loop
formation, which is related to the loop partition function
via

ZRors~ (29 —1)NQy . (38)

Therefore open and closed trails have the same free ener-
gy and by equating the decay rate of Q, with the power-
law correction of ZX°P we get the

VKGT=% . (33) aKGT=% . (39)
WS-bee
2.0 _ 2.0 FIG. 1. For each of the three-dimensional
> diamond > (3D) simulations R}/N is plotted against
o > N2, For each of the kinetic trails the data
& = are plotted on the left while the tricolor walk
1.8 1.8 data are plotted on the right. Here, as in the
Webes next pictures, the error bars are indicated ex-
sc plicitly.
1.6 1.6
| LR RN S R — T —T
0.00 0.04 0.08 0.12 0.00 0.0 0.12
N 12 N-112
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FIG. 2. For each of the 3D simulations the
probability that a path has not yet trapped,
Oy, is plotted against N 172, For each of the
kinetic trails the data are plotted on the left
while the tricolor walk data are plotted on the
right.

sc
0.98 —
0.97
D_Z
diamond
0.96 —
0.95 -
WS-bcc
0.94 . I v I . :
0.00 0.04 0.08 0.12
N-1/2

The scaling of the internal energy Uy is depicted in
Fig. 3. For the lattices with coordination number 4, Uy
is directly related to the mean number of contacts per
step, whereas for the simple cubic lattice it is some
weighted combination of the mean number of two- and
three-visited sites per step. We see that Uy behaves as

Uy~U,—UN"1?2, (40)

with U, increasing with the sparsity of the lattice.

Most importantly, the results for the specific heat Cy
are given in the upper part of Fig. 4. (For coordination
number 4, Cy is simply related to the fluctuation of the
average number of contacts.) We see that for all three
models the specific heat diverges as N increases. More-
over, the divergence is significantly weaker than a power
law would suggest. On the other hand, Cy plotted versus

the logarithm of N indicates a possible power-law depen-
dence in InN. Assuming

Cy~C(InN)* (41)

we calculated the local slopes {y of InCy versus InlnN,
which are plotted versus 1/In/N in the lower part of Fig.
4. The errors in the simulation of WS-bcc trails are too
large to allow any exponent extrapolation, so that we re-
strict ourselves to the simple cubic and diamond lattices.
It is evident that there is a strong drift in {5 (we point
out that if there was a power-law dependence of N and
not of InN, the estimators {y would have to diverge and
not decrease, as they do here). However, the exponent es-
timates for both models seem to coincide, and we esti-
mate

0.40 —
0.10 -
WS-bee
0.35 WS-bee
0.08 —
FIG. 3. For each of the 3D simulations the
F £ 0.30 finite-size internal energy Uy is plotted against
N~12_ For each of the kinetic trail simula-
0.06 diamond tions the data are plotted on the left while the
tricolor walk data are plotted on the right.
0.25 -
0.04
sc
T T T 0.20 —
0.00 0.04 0.08 0.12 0.00 0.04 0.08 0.12
N 12 Nv!/?
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WS-boe
0.8
6 —f WS-bee
0.6 diamond
& 4
0.4
o2 > FIG. 4. The finite-size specific heat Cy for
: each of the 3D simulations plotted vs the log, N
sc in the top two graphs. The slow increase indi-
0.0 —— T 0 R e e B cates a power-law divergence in that variable.
8 12 16 20 6 8 10 12 14 16 18 20 For each of the kinetic trail simulations data
log,N log,N are plotted on the left while the tricolor walk
4.0 4.0 data are plotted on the right. The bottom two
graphs are local estimates £y of the power law
3.5 3.5 WS-bee of the logarithmic divergence in each case (ex-
50 5.0 cept for the trails on the WS-bcc lattice) plot-
: ' ted against 1/(log,N).
L7 2.5 2.5
diamond
2.0 2.0
1.5 'sC 1.5
1.0 — T T 1.0 T T T T T T T
0.00 0.04 0.08 0.12 0.16 0.00 0.04 0.08 0.12 0.16
1/1og,N 1/log,N
Sxgr=1.010.5 . (42) assuming corrections to scaling one obtains

We are fairly confident that we are able to exclude the ex-
ponent {= 2 from the Edwards model [see Eq. (25)].

Taking all of this together, we have compelling evi-
dence that the model of kinetic trails is equivalent to a
model of interacting trails at its collapse transition. The
exponents associated with this transition have been
shown to assume their mean-field values. Moreover, as
Cy diverges logarithmically and the singular part of Uy
decays with N !/ (with possibly logarithmic correc-
tions), we see that we indeed have tricritical behavior
with an associated crossover exponent of

¢trails = % . (43)

However, the results are in contradiction with both the
prediction for ISAW from the Edwards model and with
the prediction that the upper critical dimension for ISAT
isd, =4.

IV. TRICOLOR WALKS

We perform an analysis analogous to that described in
the preceding section on the data from the tricolor walk
simulations.

The data for the mean-squared end-to-end distance,
which is shown in Fig. 1, show that

VIew =7 » (44)

and that we have a power-law correction with an ex-
ponent of A=0.5. [If one simply estimates vycy without

view=0.498(5).] However, in contrast to both the
behavior of kinetic trails and the predictions from the
Edwards model, the asymptotic value is approached from
above.

The probabilities Py show the same behavior as for
trails (see Fig. 2), except that P, is significantly smaller
than in all the trail models investigated. The free energy
is In3, and we obtain

Yrew=1 and arcw=1 . (45)

The internal energy Uy scales also as for trails, and is
significantly larger than in the simulated trail models.
The specific heat Cy diverges and again shows a power-
law dependence in InN. However, the plot of £, shows
that the finite-size corrections are rather small compared
to the trail simulations. We also get a value for the ex-
ponent { which is significantly larger than for trails,

Erew=2.5%0.5 . (46)
The prediction {= 3 from the Edwards model is clearly
outside the error range. Summarizing, we have strong
evidence that the model of TCW is equivalent to a model
of interacting walks at its collapse transition. The ex-
ponents associated with this transition have been shown
to assume their mean-field values and we have tricritical
behavior with a crossover exponent

¢walks = % . (47)
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V. CONCLUSIONS

The conclusions from the mappings and simulations
are various. We have found that the specific heat of the
three-dimensional tricolor kinetic walk diverges logarith-
mically. This kinetic walk had already been shown to be
equivalent to an interacting walk model in three dimen-
sions at a particular temperature [20-22]. Hence we
conclude that this temperature is indeed the collapse
point, as had been tentatively suggested previously.
Moreover, the power of the logarithmic divergence differs
from that found from field theoretic methods applied to
the (three-parameter) continuum Edwards model [4,5]. If
this were indeed the case it may be explained by denying
the universality of collapse in three dimensions (that is,
the static model equivalent to TCW is not representative
of the universality class of ISAW at the collapse point) or
by the failure of the Edwards model.

We have studied kinetic trails [37] on three three-
dimensional lattices and have found a divergent specific
heat for these models also. We have pointed out that
these kinetic trails can all be mapped onto interacting
trail systems with particular attractive couplings. As ex-
pected, whether the model contains multiple contact in-
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teractions is irrelevant to the universality class. Hence
for trails in three dimensions there is no 6 —6’ problem
[41,42]. The divergence of the specific heat differs from
that of the TCW model and the Edwards model. This is
consistent with the two-dimensional confirmation that in-
teracting walks and trails are in different universality
classes. However, we have found that the exponent
v, =1 in contradiction to the predictions in [29,34,43].

Finally, we would like to point out that the particular
advantage of the models investigated is that their struc-
ture permits one to generate configurations whose lengths
are three orders of magnitude larger than is currently
realizable with conventional Monte Carlo techniques.
This advantage is clear for the model of interacting trails,
where a direct comparison to Monte Carlo simulations is
possible (see, e.g., [14]).

ACKNOWLEDGMENTS

The authors take pleasure in thanking R. Brak and A.
J. Guttmann for making several useful suggestions con-
cerning the manuscript. We are grateful to the Australi-
an Research Council for financial support.

[1] P.-G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, 1979).
[2] B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539
(1987).
[3] T. Prellberg and A. L. Owczarek, J. Phys. A 27, 1811
(1994).
4] B. Duplantier, Europhys. Lett. 1, 491 (1986).
5] B. Duplantier, J. Chem. Phys. 86, 4233 (1987).
6] P. G. de Gennes, J. Phys. (Paris) 36, L55 (1975).
71 M. J. Stephen, Phys. Lett. 53A, 363 (1975).
8] B. Duplantier, J. Phys. (Paris) 43, 991 (1982).
9]J. des Cloizeaux and G. Jannink, Polymers in Solution
(Clarendon Press, Oxford, 1990).
[10] B. Li, N. Madras, and A. D. Sokal, New York University
Report No. NYU-TH-94/09/01, 1994 (unpublished).
[11] A. L. Owczarek, T. Prellberg, and R. Brak, Phys. Rev.
Lett. 70, 951 (1993).
[12] R. Brak, A. L. Owczarek, and T. Prellberg, J. Phys. A 26,
4565 (1993).
[13] H. Meirovitch and H. A. Lim, J. Chem. Phys. 92, 5144
(1990).
[14] H. Meirovitch and H. A. Lim, J. Chem. Phys. 92, 5155
(1990).
[15] I. Majid, N. Jan, A. Coniglio, and H. E. Stanley, Phys.
Rev. Lett. 52, 1257 (1984).
[16] J. Lyklema and K. Kremer, J. Phys. A 17, L691 (1984).
[17] K. Kremer and J. Lyklema, J. Phys. A 18, 1515 (1985).
[18] A. Weinrib and S. A. Trugman, Phys. Rev. B 31, 2993
(1985).
[19] A. Coniglio, N. Jan, I. Majid, and H. E. Stanley, Phys.
Rev. B 35, 3617 (1987).
[20] R. M. Bradley, J.-M. Debierre, and P. Strenski, Phys. Rev.
Lett. 68, 2332 (1992).
[21] R. M. Bradley, J.-M. Debierre, and P. Strenski, J. Phys. A
25, L541 (1992).
[22] R. M. Bradley, P. Strenski, and J.-M. Debierre, Phys. Rev.

[
[
[
[
[
[

A 45,8513 (1992).

[23] D. Bennett-Wood, A. L. Owczarek, and T. Prellberg, Phy-
sica A 206, 283 (1994).

[24] R. M. Bradley, Phys. Rev. A 39, 3738 (1989).

[25] R. M. Bradley, Phys. Rev. A 41, 914 (1990).

[26] M. T. Batchelor, A. L. Owczarek, K. Seaton, and C. M.
Yung, J. Phys. A (to be published).

[27] A. L. Owczarek and T. Prellberg, J. Stat. Phys. (to be pub-
lished).

[28] A. Malakis, Physica 84, 256 (1976).

[29] Y. Shapir and Y. Oono, J. Phys. A 17, L39 (1984).

[30] H. A. Lim, A. Guha, and Y. Shapir, J. Phys. A 21, 773
(1988).

[31]I. S. Chang, A. Guha, H. A. Lim, and Y. Shapir, J. Phys.
A 21, L559 (1988).

[32] A.J. Guttmann, J. Phys. A 18, 567 (1985).

[33] A. J. Guttmann, J. Phys. A 18, 575 (1985).

[34] A. Guha, H. A. Lim, and Y. Shapir, J. Phys. A 21, 1043
(1988).

[35] H. Meirovitch and H. A. Lim, Phys. Rev. A 39, 4186
(1989).

[36] 1. S. Chang, H. Meirovitch, and Y. Shapir, Phys. Rev. A
41, 1808 (1990).

[37]J. Lyklema, J. Phys. A 18, L617 (1985).

[38] D. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, MA,
1969).

[39] P. Coddington, Syracuse University Report No. SSCS 526,
1993 (unpublished).

[40] P. L’Ecuyer and S. Cote, ACM Trans. Math. Soft. 17, 98
(1991).

[41] P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys.
Rev. Lett. 60, 1203 (1988).

[42] B. Duplantier and H. Saleur, Phys. Rev. Lett. 60, 1204
(1988).

[43] H. A. Lim, Int. J. Mod. Phys. 3, 385 (1992).



